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1. Introduction

Holography equates a (d + 1)-dimensional theory of gravity with a d-dimensional field the-

ory. The AdS/CFT correspondence [1] is an explicit example of this, in which supergravity

(SUGRA) formulated on the ten-dimensional bulk spacetime AdS5 × S5 is dual to N = 4

SU(N) super Yang-Mills (SYM) theory living on the four-dimensional boundary of the

AdS5 factor. The precise statement of the duality equates the on-shell bulk action with

the generating functional of the CFT [2, 3]. In general, however, both of these quantities

are infinite: the bulk action suffers IR divergences while UV divergences appear on the

CFT side. The method of holographic renormalization [4 – 7] was developed to remove

these divergences in a consistent way so that the correspondence equates finite, physical

quantities.
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Holographic renormalization involves regulating the on-shell bulk action and then

adding covariant counterterms to cancel the divergences that appear as the regulator is

removed. This technique is very general, and should certainly apply to the subset of bulk

solutions that describe supersymmetric (SUSY) probe brane solutions in AdS/CFT. The

AdS/CFT duality is constructed from the near-horizon limit of a stack of N D3-branes

with N → ∞. Introducing a finite number of additional branes orthogonal to the D3’s

in some directions will produce probe branes embedded in the near-horizon geometry of

the D3’s, which is AdS5 × S5. The simplest known probe branes of this type preserve

half the supersymmetry and introduce additional fields in the N = 4 SYM. Their action

is the Dirac-Born-Infeld (DBI) action, whose contribution to the bulk action is simply the

volume of the brane. Since the backreaction of the probe branes on the background ge-

ometry can be neglected this system is probably the simplest application of holographic

renormalization in a string theory setting and serves as a nice illustration of the method.

One aspect of holographic renormalization for submanifolds, the conformal anomaly, was

previously studied in [8]. In this paper, we consider four known probes: a D7-brane [9], two

D5-branes [10, 11], and a probe D3-brane [12]. One of the cases in non-supersymmteric [11]

while the other three cases are half supersymmetric. The brane embedding in all of these

cases is described by a single scalar field that, via the correspondence, will be dual to some

operator in the field theory.

Given a renormalized bulk action, renormalized correlators in the dual field theory

can be computed straightforwardly. The goal of this paper is to compute renormalized

one-point functions, or vacuum expectation values (vev’s), for the operators dual to the

embedding scalars, using holographic renormalization. Especially for the D3/D7 system

the situation is interesting since the vev is not just the subleading term in the asymptotic

expansion of the scalar field. Our calculation of the vev clarifies the somewhat ad hoc

procedure that has been used in the literature.

This paper is organized as follows. In section 2, we review holographic renormaliza-

tion, including the methods of adding covariant counterterms to render the bulk action

finite and of computing one-point functions from this renormalized action. In section 3,

we show that the counterterms for our DBI actions are identical to the counterterms for

a free scalar in AdS. In section 4, for the D7, we use these counterterms to compute the

one-point function for the embedding scalar’s dual operator. In this case, we find that a

finite counterterm must be included if the renormalization scheme is to be supersymmetric.

We do a similar computation of a one-point function in section 5 for the D5 probe. We also

consider a second D5 embedding that is not considered in the general arguments of sec-

tion 3 but which needs no new counterterms. In Section 6 we compute one- and two-point

functions for the D3 probe.

2. Review: holographic renormalization

We review in this section the holographic renormalization of the volume of an AdSd+1

spacetime and of a free scalar in that spacetime. The former has been studied extensively
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in [4 – 6, 13], while the latter was explained in detail in [7], see [14] for a review of holographic

renormalization.

To begin, write the metric of asymptotically AdSd+1 spacetime in the form of Fefferman

and Graham [15] in units where the AdS radius is one (which we use throughout):

ds2 = Gµνdxµdxν =
dr2

r2
+

1

r2
gij(x, r)dxidxj , (2.1)

where r is the radial coordinate, µ, ν = 0, . . . , d and i, j = 0, . . . , d − 1 and where

g(x, r) = g(0) + r2g(2) + · · · + rdg(d) + h(d) log(r2) + O(rd+1). (2.2)

The logarithmic term only appears for even d and only even powers of r appear up to

order rd−1. Solving Einstein’s equation recursively for the g(i) gives two useful identities:1

Trg(2) = R0
2(d−1) , with R0 the Ricci scalar built from g(0), and Trg(4) = 1

4Tr(g2
(2)) [7].

For the renormalization of the volume of AdSd+1, we restrict our discussion to d =

2, 3, 4, which will be relevant for the probe branes we consider. The volume is2

VAdS =

∫

dd+1x
√

G . (2.3)

Naively, this volume is infinite since the integration extends all the way to the boundary at

r = 0. Holographic renormalization proceeds in two steps. First, a regulator is introduced

by extending the integration only to r = ε. Second, counterterms are added to cancel ε → 0

divergences, yielding a finite, physical answer. These counterterms must be built from data

on the r = ε slice to preserve covariance. This will include the induced metric on the r = ε

slice, γij , and the Ricci scalar (and tensor) built from γ, Rγ . This counterterm procedure

is valid for any on-shell bulk action, which will in general be divergent due to integration

down to r = 0, and applies to both the AdSd+1 volume and the free scalar action as we

will review below. The counterterms for the volume renormalization are

L1 = −1

d

√
γ,

L2 =

{

−1
2

1
d(d−1)(d−2)

√
γRγ for d 6= 2

1
4 log(ε)

√
γRγ for d = 2

(2.4)

and for d = 4 only, an additional counterterm is needed:

L3 = − log ε
√

γ
1

32
(RijR

ij − 1

3
R2

γ). (2.5)

We will denote subtracted and renormalized quantities as Vsub = VAdS +
∫

ddx[L1+L2+L3]

and Vren = lim
ε→0

Vsub.

1Indices are raised and lowered using g(0).
2This is related with the on-shell value of the Einstein-Hilbert action for gravity with a negative cosmo-

logical constant as, VAdS = κ
2

d
Son−shell

AdS
, where SAdS = 1

2κ2

R

dd+1x
√

G(R + 2Λ). Notice that we use the

conventions in [7], in particular the curvature conventions are such that AdS has positive curvature.
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A free, massive scalar field Φ(x, r) in this AdS background has action

S =
1

2

∫

dd+1x
√

G(Gµν∂µΦ∂νΦ + M2Φ2) (2.6)

with equation of motion (EOM) the Klein-Gordon equation with the Laplacian associated

with Gµν . Via the usual AdS/CFT dictionary, this scalar will be dual to some gauge-

invariant CFT operator with dimension ∆ given by M2 = (∆ − d)∆. A solution to the

EOM resulting from the above action will, in general, have the form

Φ(x, r) = rd−∆φ(x, r) (2.7)

= rd−∆(φ(0) + rφ(1) + · · · + r2∆−dφ(2∆−d) + r2∆−d log(r2)ψ(2∆−d)) + O(r∆+1).

The logarithmic term appears only when 2∆ − d is an integer, which we will assume to

be the case, and reflects the existence of matter conformal anomalies in the dual CFT, i.e.

conformal anomalies due to short distance singularities in correlators of composite gauge

invariant operators [16]. All coefficients φ(n) for n < 2∆ − d, as well as ψ(2∆−d), can be

computed recursively by inserting this form of the solution into the EOM and expanding in

powers of r. The result is that the leading coefficient, φ(0), and the coefficient φ(2∆−d) are

not fixed by the EOM but all other coefficients are fixed by these two. The one coefficient

we will need explicitly in terms of φ(0) is the coefficient of the logarithmic term for the case

2∆ − d = 2:

ψ(2) = −1

2

[

¤0φ(0) +

(

d

2
− 1

)

φ(0)Trg(2)

]

. (2.8)

The action naively evaluated on such a solution is again infinite because of IR diver-

gences, so holographic renormalization proceeds as before. The resulting counterterms are

given by

L4 =
√

γ
(d − ∆)

2

(

1 +
1

d − ∆

1

log ε

)

Φ2(x, ε)

L5 =
1

2(2∆ − d − 2)

√
γ

(

Φ(x, ε)¤γΦ(x, ε) +
d − ∆

2(d − 1)
R[γ]Φ(x, ε)2

)

(2.9)

These counterterms are the only ones required when 2∆ − d ≤ 2. The second term in

L4, proportional to 1
log(ε) , only appears in our examples when the scalar saturates the

Breitenlohner-Freedman (BF) bound for AdSd+1, M2 ≥ −d2

4 [17], for which 2∆ − d = 0.

In this case also L4 alone suffices to renormalize the action. In the case that 2∆ − d = 2,

the coefficient [2(2∆ − d − 2)]−1 in L5 is replaced with −1
2 log(ε) [7].

Renormalized correlators in the boundary theory can be computed from the renormal-

ized action. According to the AdS/CFT dictionary, the leading coefficient of the asymp-

totic expansion will act as a source for the dual operator. Denoting this operator as O, the

one-point function can be written

〈O〉 =
1

√
g(0)

δSren

δφ(0)
, (2.10)

– 4 –
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which can in turn be written in terms of quantities on the r = ε slice:

〈O〉 = lim
ε→0

(

1

ε∆

1√
γ

δSsub

δΦ(x, ε)

)

. (2.11)

For the cases we consider, if the scalar saturates the BF bound this will be modified:
1

ε∆
→ log(ε)

ε∆
[17].

The structure of the counterterms and the renormalized one-point functions is most

transparent in the radial Hamiltonian formalism, where the radius is playing the role of

time [18, 19]. This is also the fastest way to arrive at the results reviewed above, since in

this method covariance is manifest at all stages. In this formalism the central object is the

radial canonical momentum,

π =
∂L

∂Φ̇
, (2.12)

where overdot denotes differentiation w.r.t. the radius ρ = − log r. It can be easily shown

to correspond to a regularized one-point function,

〈O〉reg ≡ δSreg

δΦ(x, ε)
= π(x, ε) . (2.13)

This expression is infinite as the regulator is removed. To extract the finite part in a co-

variant fashion we use the fact that the theory possesses a well-defined dilatation operator,

δD =

∫

ddx

(

2γij
δ

δγij
+ (∆ − d)Φ

δ

δΦ

)

. (2.14)

Let us expand the canonical momentum in eigenfunctions of δD,

π =
√

γ(π(d−∆) + · · · + π(∆) + π̃(∆) log r2 + · · ·), (2.15)

where the subscripts indicate dilatation weight of the terms,

δDπ(n) = −nπ(n), δDπ̃(∆) = −∆π̃(∆), δDπ(∆) = −∆π(∆) − 2π̃(∆). (2.16)

Notice that the normalizable mode π(∆) transforms anomalously. This expansion is a co-

variant analogue of the radial expansion (2.7). The explicit form of π(i) is found by inserting

(2.15) in Hamilton’s equations and iteratively solving them by collecting terms with the

same weight. This procedure determines all π(i) except π(∆) which is left undetermined, as

in the discussion below (2.7).

The renormalized 1-point function is now simply given by the term of weight ∆, as it

should since the dual operator has dimension ∆,

〈O〉 = π(∆). (2.17)

Furthermore, evaluating the regulated action on-shell one immediately gets

Sreg = −
∫

ddx
√

γ
1

2
πΦ, (2.18)
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and thus the counterterms are (minus) the terms involving the momentum eigenfunctions

with weight less than ∆ plus the logarithmic term involving π̃∆. This is a general feature

of the counterterm action for any theory, namely the counterterms are always certain

linear combinations of momentum eigenfunctions with weight less than ∆ plus logarithmic

counterterms obtained by expanding the regulated action in eigenfunctions of the dilatation

operator and using the basic relation (2.13) with δ → δD,

δDSreg = πδDΦ + πijδDγij (2.19)

where we have reinstated the metric dependence. We refer to [18, 19] for the details and

further discussion.

3. Generalities for probe branes

3.1 General solution and counterterms

All the cases we consider in this section are SUSY probe D-branes embedded in AdS5 ×
S5. In every case, the probe wraps some AdSm × Sn with |m − n| = 2 as required by

supersymmetry [11]. We will focus on the cases with m−n = 2. In all these cases, a single

scalar field describes the embedding. These probe branes are thus described by a scalar

in a fixed gravitational background, only with an action more complicated than that of a

free scalar. In general the non-linear Born-Infeld action would lead to new counterterms.

We will show, however, that in the class of embeddings we analyze the counterterms are

identical to that of a free scalar. To show this it is sufficient to show that the leading

asymptotic structure of the field equations (i.e. the orders where the normalizable and

non-normalizable modes appear) is the same as that of the free scalar, and establish that

the on-shell actions agree up to order rm, the highest order at which divergences could

appear in the action. From this follows (upon use of (2.13)) that the radial canonical

momenta are the same up to π(∆) and thus the counterterm actions are the same. It also

follows (and we will verify it explicitly) that the solution of the EOM has the same form

as the free scalar solution to order r∆.

In three of the four cases we consider, the scalar is a coordinate on the S5 transverse

to the brane. The Sn is a trivial cycle on the S5, so the scalar, which gives the position of

the Sn in a transverse direction, can have a profile such that the Sn “slips off” the S5 at

some finite r. In the one exceptional case, for the D5 probe, the scalar is not a coordinate

on the S5 but is the position of the AdS4 the brane wraps inside AdS5. This case is not

included in the analysis of this section.

The scalar “slipping mode” has mass-squared M2 = −n (as we will show). Via the

AdS/CFT dictionary the dimension of the dual operator is ∆ = n. In particular, this

means that d − ∆ = (m − 1) − n = 1, so in every case we consider the scalar’s asymptotic

expansion will have a leading behavior of simply r. Recall also that the logarithmic term

in the asymptotic expansion of the free scalar entered at order r∆ which here will be rn.

Table 1 summarizes some useful quantities for the cases we consider.

Given appropriate coordinates on AdS5, the metric of the AdSm subspace will have

the same form as (2.1) but now µ, ν = 0, . . . ,m − 1 and i, j = 0, . . . ,m − 2. Let the S5

– 6 –
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Dp probe m = d + 1 n = ∆ 2∆ − d -d2

4

D7 5 3 2 -4

D5 4 2 1 -9
2

D3 3 1 0 -1

Table 1: Operator dimensions and BF bounds.

metric be

dΩ2
5 = dΦ2 + sin2(Φ)dθ2 + cos2(Φ)dΩ2

3 (3.1)

with dΩ2
3 the standard metric on S3. The Sn’s with n < 3 sit inside this S3. The DBI

action is then

S =

∫

dmx
√

G cosn(Φ)
√

1 + Gµν∂µΦ∂νΦ (3.2)

where we neglect integration over the remaining n variables because the cases we are

interested in have no dependence on these coordinates. The resulting EOM for Φ is then

0 = ¤Φ + n tan(Φ) − 1

2

Gµν∂µΦ∂ν(G
ρσ∂ρΦ∂σΦ)

1 + Gαβ∂αΦ∂βΦ
(3.3)

where ¤ is with respect to the AdSm metric. To order r∆, this is identical to the EOM of

a free scalar with M2 = −n in a fixed AdSm background, which we explicitly show below.

In the case of the free scalar the asymptotic solution has two undetermined coefficients, the

source and the vev part, as we reviewed in section 2. This matches the fact that the field

equation is a second order linear differential equation in r, so two pieces of boundary data

are required in order to specify the solution. This is also consistent with holography: on the

field theory side the form of the Lagrangian and the specific vacuum we consider (the vev’s)

are the only information needed in order to specify the theory. We therefore expect that

these facts will remain true for the asymptotic solution of the DBI field equation (3.3).

Indeed, despite the higher derivative terms in the DBI action, the EOM (3.3) is still a

second order differential equation in r (now non-linear) and we now verify this expectation

explicitly.

Consider a solution with the most general possible form:

Φ(x, r) = r





∞
∑

i=0

φ(i)r
i +

∞
∑

j=0

ψ(j)r
j log(r) +

∞
∑

k=0

p
∑

l=2

Ψ(k,l)r
k log(r)l



 . (3.4)

We are allowing higher powers of log(r), but inserting this solution into the EOM shows

that generically truncating the series at any finite order p requires the Ψ(k,l) to all be zero.

To see this, consider the leading term in the expansion of the EOM:

0 = r[(m − 3)ψ(0) + 2Ψ(0,2) + 2 log(r)((m − 3)Ψ(0,2) + 3Ψ(0,3))) + . . .

+ (p − 1) log(r)p−2((m − 3)Ψ(0,p−1) + pΨ(0,p))

+ p log(r)p−1(m − 3)Ψ(0,p)] + O(r2) . (3.5)

– 7 –
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Clearly, for any finite p, Ψ(0,p) = 0 implies Ψ(0,p−1) = 0 and so on so that all r log(r)l do

not appear when l ≥ 2. A similar story happens for Ψ(1,p), that is, all r2 log(r)l are absent

for l ≥ 2. Of course, an infinite number of higher powers of log(r) could appear (p = ∞),

but this would invalidate the assumption that the solution has a power series expansion.

Special cases arise when the numerical coefficients multiplying the highest power of log(r)

are zero. For instance, m = 3 is a special case in (3.5) for which the coefficient of log(r)p−1

is zero (although in this case one still obtains Ψ(0,p) = 0). These cases have to be analyzed

separately and could result in higher powers of log(r) with coefficients determined in terms

of the source and the vev coefficients. For m = 4, 5 we verified that higher powers of log(r)

do not appear up to order r5, that is, Ψ(k,l) = 0 for k = 2, 3, 4, 5. When m = 3, Ψ(2,2) and

Ψ(2,3) are non-zero but are determined in terms of ψ(0). Notice that such higher order logs

also appear in the Coulomb branch example in [17] and that both examples with higher

powers of logs are cases where the BF bound is saturated. It is unclear to us whether this is

a general feature (i.e. that higher order logs appear only when the BF bound is saturated)

or it is specific to the examples we considered.

What results from this discussion is that the form of the solution, up to the order we

are interested in, is the same as that of a free scalar:

Φ(x, r) = r





∆−1
∑

i=0

φ(i)r
i +

∆−1
∑

j=0

ψ(j)r
j log(r)



 + O[r∆+1]. (3.6)

Inserting this into the EOM gives, to order r2,

0 = (m − 3)ψ(0)r + ((m − 4)φ(1) + (m − 5 + (m − 4) log(r))ψ(1))r
2 + O(r3) (3.7)

To this order, this is identical to a free scalar in AdSm with mass-squared M2 = −n

and d − ∆ = 1. In particular, the leading coefficient, φ(0)(x) is left undetermined by the

EOM, as expected: this will be a source or will contribute to the vev of the dual operator,

depending on whether the scalar saturates the BF bound. Notice also that for all m that

we consider, ψ(1) is zero. For m = 3, 4, (3.7) determines the form of solution up to order

r∆. The value m = 5, however, requires the next order, r3. When m = 5, (3.7) requires

ψ(0) = φ(1) = 0 in which case the r3 term is

0 = r3[¤0φ(0) + Tr(g(2))φ(0) +
1

3
(m − 5)φ3

(0) − 2(m − 5)φ(2)

+ (7 − m)ψ(2) + 2(5 − m) log(r)ψ(2)] + O(r4). (3.8)

This shows that φ(2) is undetermined and ψ(2) is fixed by φ(0) in precisely the same way as

the free scalar, (2.8), with d = m − 1 = 4. This is a nontrivial result: for all values of m

we consider, the form of the solution is the same as that of a free scalar up to order r∆.

Since the solution is the same up to order r∆ the momentum dilatation eigenstates

up to π∆ will be as well. It follows that the divergences will be the same as that of a free

scalar, and we explicitely verify this now. Expanding the argument of (3.2) we obtain:

S =

∫

dmx
√

G

[

1 +
1

2
[Gµν∂µΦ∂νΦ − nΦ2]

– 8 –
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+

(

− n

12
+

n2

8

)

Φ4 − 1

8
(Gµν∂µΦ∂νΦ)2 − n

4
Φ2Gµν∂µΦ∂νΦ + O(r6)

]

. (3.9)

First notice that the leading term is simply the volume of AdSm, requiring the counterterm

L1, L2 and L3 of the last section.

The leading Φ dependence is that of a free scalar in a fixed AdSm background with

M2 = −n, as advertised. As
√

G = 1
rm

√
g and we care only about m ≤ 5, all terms of

order r6 or higher cannot contribute to divergences. When m < 5 the Φ4 terms, which go

at leading order as r4, will not produce divergences, and hence in these cases the free scalar

counterterms L4 and L5 are sufficient. When m = 5 these terms may produce logarithmic

divergences, but these terms cancel against each other to order r4 because n = 3:

(

− n

12
+

n2

8

)

Φ4 − 1

8
(Gµν∂µΦ∂νΦ)2 − n

4
Φ2Gµν∂µΦ∂νΦ =

=

[(

− n

12
+

n2

8

)

− 1

8
− n

4

]

φ4
(0)r

4 + O(r6) . (3.10)

3.2 Supersymmetric background solution

In the three cases with a scalar describing the slipping mode it is easy to check that with

gij(x, r) = ηij an exact solution to the EOM preserving half the supersymmetries is

Φ = arcsin(cr) = cr +
c3

6
r3 + · · · , (3.11)

that is, a solution of the form (3.6) with φ(0) = c, φ(1) = 0, φ(2) = c3

6 and no logarithmic

terms. This solution describes a D-brane extending up to

rmax =
1

c
. (3.12)

c sets the mass of a fundamental matter field in the dual field theory. In the flat embedding

space this embedding just describes a planar D-brane locate at a fixed distance away from

the stack of D3-branes,

X =
1

r
sin(Φ) = c (3.13)

where X is one of the flat embedding space coordinates written in a spherical coordinate

system.

We will be mostly interested in calculating correlation functions, in particular the

one-point function, in this particular background. In order to ensure that holographic

renormalization gives finite answers for all correlation functions we need to make sure

however to add all the counterterms for arbitrary boundary values of the fields, so that we

get finite answers for expectation values in the presence of sources. While the counterterms

and the background solution are very similar in all the cases, the physical interpretation

as well as the details of the procedure are quite different in all the cases and hence we will

turn to the examples one by one.
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4. The D3/D7 system

4.1 The system

In the supersymmetric embedding of a probe D7 in AdS5×S5, the D7 fills the 5D spacetime

and wraps an S3 inside the internal space, that is, the probe wraps an AdS5 × S3 and

hence m = 5, n = 3, and the scalar’s mass is above the BF bound. This system was

proposed in [9] as a way to introduce flavor, that is fundamental representations, into

the AdS/CFT correspondence. The particular supersymmetric case we are studying is

dual to the N = 4 SYM theory coupled to a fundamental hypermultiplet that preserves

N = 2 supersymmetry. Already in [9] it was noted that the gravity side has a non-zero

subleading term φ(2) in its asymptotic expansion, even though from the field theory side it

is clear that no vev is allowed. Some arguments were given that on the gravity side the vev

really is zero. Starting from [20] it has become common practice to read off the vev from

the subleading term in the flat embedding space coordinate X = 1
r sin(Φ) which on the

background solution is constant and indeed has no subleading term. The absence of any

rigorous derivation of the correct procedure to calculate the vev became apparent with the

work of [21] where different answers were found depending on what coordinate system was

used. In their work a very natural choice was again “apparent” that yielded the expected

answers, but the question arose how one would find the right coordinate system in less

symmetric cases. Here we will apply holographic renormalization to that problem and will

find an unambiguous answer.

4.2 Counterterms

In addition to the counterterms we derived for general m and n above, only in the case of

the D7 brane we face an interesting new subtlety: the possibility of finite counterterms. A

counterterm of the form

Lf = α
√

γΦ(x, ε)4 (4.1)

will not introduce divergences for any α, but will change the on-shell action by a finite

amount depending on the free coefficient α. Different values of α correspond to different

renormalization schemes and some correlation functions will contain scheme-dependent

terms. As first pointed out in [17] in the special case that one is interested in correlation

functions in a supersymmetric background, one can fix the finite counterterms by picking

the unique scheme in which supersymmetry is preserved. In the supersymmetric scheme

not just the divergent pieces of the on-shell action but the action as a whole has to vanish

when calculated on the supersymmetric background solution. Otherwise the ground state

energy in the dual field theory would not be zero and hence supersymmetry would be

broken.

For the D7 case the counterterms read

L1 = −1

4

√
γ (4.2)

L2 = − 1

48

√
γRγ
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L3 = − log ε
√

γ
1

32

(

RijR
ij − 1

3
R2

γ

)

L4 =
1

2

√
γΦ2(x, ε)

L5 = −1

2
log(ε)

√
γΦ(x, ε)

(

¤γ +
1

6
Rγ

)

Φ(x, ε)

For the supersymmetric embedding, gij(x, r) = ηij and the curvature on the slice is

zero so only L1 and L4 contribute. To fix the finite counterterm we only need to plug the

background solution (3.11) into the action. On the background solution the action exactly

reduces to

Sreg =

∫

d4x

∫ rmax

ε
dr

1

r5
(1 − c2r2) =

∫

d4x

(

−1

4

1

r4
+

1

2

c2

r2

∣

∣

∣

∣

rmax

ε

)

. (4.3)

Indeed the action picks up a non-vanishing contribution of − 1
4r4

max

+ c2

r2
max

= + c4

4 from the

IR boundary. The UV divergence is ensured to cancel by the counterterms we introduced

above. L4 gives an additional finite piece, L4 = . . . + c4

6 + . . .. All in all we see that in

order to set the on-shell action to zero we need

α = − 5

12
. (4.4)

4.3 One-point function

Holographic renormalization tells us that the vev is obtained as the ε → 0 limit of

〈O〉 =
1

ε3√γ

δSsub

δΦ(ε)
. (4.5)

In this case,
δSreg

δΦ
=

δL

δΦ′

∣

∣

∣

∣

ε

= − 1

ε3

√
g cos3(Φ(ε))

Φ′(ε)
√

1 + ε2Φ′(ε)2
. (4.6)

This then contributes divergent and finite parts to the vev

〈O〉reg = −
φ(0)

ε2
− 3ψ(2) log(ε) + (2φ3

(0) − 3φ(2) − ψ(2)) + O(ε2) (4.7)

Adding in addition the variations of the counterterms we finally obtain for the vev

〈O〉 = log(ε)

(

−2ψ(2) −
1

6
φ(0)R0 − ¤0φ(0)

)

+

(

1

3
φ3

(0) − 2φ(2) − ψ(2)

)

+ O(ε2). (4.8)

The coefficient of the log(ε) is zero via the EOM, (2.8), and inserting the value of ψ(2) from

(2.8) into the finite piece then gives

〈O〉 = −2φ(2) +
φ3

(0)

3
+

R0

12
φ(0) + ¤0φ(0). (4.9)

The last two terms come from the curvature of the induced metric on the r = ε slice and can

in fact be eliminated by adding a finite counterterm proportional to the matter conformal

anomaly. On the background solution sin(Φ) = cr we have φ(0) = c and φ(2) = c3

6 , so

– 11 –



J
H
E
P
0
4
(
2
0
0
6
)
0
1
5

indeed

〈O〉background = 0. (4.10)

The finite counterterms required by supersymmetry set the vev to zero despite the ap-

pearance of a non-vanishing subleading term in the asymptotic expansion of the scalar

field.

5. The D3/D5 system

5.1 The system

In the supersymmetric embedding of a probe D5 in AdS5×S5, the D5 fills an AdS4 subspace

of the 5D spacetime and wraps an S2 inside the internal space, that is, the probe wraps

an AdS4 × S2 and hence m = 4, n = 2 and the scalar’s mass is above the BF bound. This

system was introduced in [10] and analyzed in detail in [22]. The dual field theory in this

case is a defect conformal field theory. Again the probe brane in the bulk corresponds to

the introduction of fundamental matter in the field theory, but this time the matter only

lives on a 3d defect in the 4d field theory. While the defect breaks translation invariance

in the directions orthogonal to the defect, the field theory remains conformal as long as

the matter is massless. The subgroup of the full conformal group that is preserved is

the SO(3, 2) that leaves the position of the defect invariant. This symmetry in the bulk

demands the worldvolume to be AdS4. The supersymmetric background solution once more

describes adding a mass term to the fundamental matter. A new possibility that arises in

this case is to turn on the scalar that corresponds to the embedding of the AdS4 inside the

AdS5 [11]. This deformation breaks all supersymmetries. On the field theory side it was

argued in [11] that one turned on a vacuum expectation value for the defect field, as we will

verify explicitly below. We will also see that the energy of the configuration in non-zero.

On the field theory side one certainly expects such configurations to eventually relax to the

supersymmetric ground state. On the gravity side, this process should be mapped to some

instability of the brane embedding that drives the vev to zero. It would be interesting to

analyze the stability of this embedding. This would provide an example of an unstable (or

perhaps metastable) configurations that exists and can be studied both at weak and strong

coupling.

5.2 Mass deformation

In order to cancel the UV divergences we need to add the following counterterms:

L1 = −1

3

√
γ (5.1)

L2 = − 1

12

√
γRγ

L4 =
1

2

√
γΦ2(x, ε)

L5 = −1

2

√
γΦ(x, ε)

(

¤γ +
1

4
Rγ

)

Φ(x, ε) .
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No option to add finite counterterms involving only Φ and
√

γ arises. Indeed with this set

of counterterms the on-shell action on the background solution is zero already,

Sreg =

∫

d3x

∫ rmax

ε
dr

1

r4

√

1 − c2r2 =

∫

d3x

(

−(1 − c2r2)3/2

3r3

∣

∣

∣

∣

∣

rmax

ε

)

. (5.2)

The IR term, with rmax = 1
c , is identically zero.

With these counterterms it is again straightforward to calculate the vev. Setting to

zero the terms involving Rγ and ¤γ one simply obtains

〈O〉 = −φ(1). (5.3)

Again, the supersymmetric background solution which has φ(1) = 0 has no vev, as expected.

5.3 Vev deformation

In this subsection we study the probe RG flow obtained by turning on a scalar that controls

the embedding of the AdS4 part inside the AdS5 while keeping the brane wrapped on the

maximal sphere inside S5, Ψ = 0 [11]. For simplicity in this case we will only calculate the

vev on the background solution; no problems are anticipated in once more working out the

full holographic RG program for arbitrary correlation functions. Looking for an embedding

x3 = x(r) the induced metric on the 4d part becomes

ds2 =
1

r2
(−dt2 + dx2

1 + dx2
2 + (1 + (x′)2)dr2) (5.4)

and the corresponding action is

S =

∫

d4x

r4

√

1 + (x′)2. (5.5)

The most general solution to the equations of motion with the ansatz that x3 only depends

on r is

x′ =
cr4

√
1 − c2r8

, (5.6)

so that asymptotically

x = r0 +
c

5
r5 + . . . . (5.7)

This brane extends up to

rmax =
1

c1/4
. (5.8)

The solution with c = 0 is the supersymmetric AdS4 × S2 defect. What happens at

r = rmax for the vev deformation is quite distinct from what we have encountered in the

other examples. While before a sphere was shrinking in the internal space so that the

brane smoothly terminates, for the vev deformation the internal sphere has constant size.

To understand the physics of this embedding it is useful to note that close to rmax we

simply get

x′ =

√
rmax

2
√

2

1√
rmax − r

+ · · · , x =

√

rmax

2

√
rmax − r + · · · . (5.9)

– 13 –



J
H
E
P
0
4
(
2
0
0
6
)
0
1
5

Instead of ending at r = rmax the string turns around and hits the boundary again. The

probe brane no longer is dual to the defect conformal field theory of a single D5 brane

defect, but with a D5 and anti-D5 defect seperated by a distance d = 2
√

πΓ(13/8)
5Γ(9/8) rmax.

The on-shell action can be evaluated exactly

Sreg =

∫

d3x

∫ rmax

ε
dr

1

r4(1 − c2r2)
=

∫

d3x

(

1

3ε3
− c3/4

√
πΓ(13/8)

15Γ(9/8)
+ O(ε)

)

(5.10)

where the finite term comes from the IR boundary. It follows that we should add to the

action the counterterm

L1 = −1

3

√
γ . (5.11)

With this counterterms the action is not just finite but zero for the supersymmetric embed-

ding, and is negative for the non-supersymmetric embedding. For the general x(r) solution

we get for the vev

〈O〉 =
1

ε3

1√
γ

δSsub

δx
= − 1

ε4

x′
√

1 + (x′)2

∣

∣

∣

∣

∣

ε

= −c. (5.12)

This agrees with the expectation that a non-vanishing c corresponds to a vev-induced flow

once one realizes that x
r is dual to an operator of dimension four [22]. The negative energy

does not signal an instability of the original D5 brane defect since, as we noted above,

the vev deformation really is dual to a system with 2 defects, one due to a D5 and one

due to an anti-D5. It is not too surprising that the latter system can lower its energy by

moving out onto the Higgs branch. Since the constant c is completely fixed by the distance

d between the defects we expect this configuration to correspond to the stable ground state

of the system.

6. The D3/D3 system

6.1 The system

The D3/D3 system is another example that can be treated with the same methods. In this

case, the probe D3’s wrap an AdS3 × S1 inside AdS5 × S5, m = 3 and n = 1. This system

was analyzed in [12]. It corresponds once more to a defect conformal field theory, this time

with the fundamental hypermultiplet localized on a 2d defect in the 4d field theory. The

interesting new aspect of this system is that the mass of the slipping mode saturates the

BF bound. This gives rise to a slightly different structure of counterterms in holographic

renormalization; it also leads to an interesting reversal in the role of the vev versus mass

as we will see below.

From the boundary theory point of view it is also clear that this system is different.

In all the other cases we had a higher dimensional brane intersecting the D3 brane, so that

in the field theory limit the worldvolume fields on the higher dimensional brane decoupled

together with gravity. The only dynamical fields remaining were those on the D3 branes

and on the intersection from the 3-7 or 3-5 strings respectively. For the D3/D3 system the

N = 4 SYM on both D3 stacks remains dynamical, so the field theory is really the theory
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of two N = 4 theories coupled to each other via a bifundamental hypermultiplet living on

a 2d defect. In particular, the spacetime separation between the two stacks of D3 branes

can be viewed as a vev for one of the additional D3’s worldvolume fields and should no

longer be interpreted as a parameter (as in the D5 or D7) case, but as a vev of a dynamical

field. We will see that holographic renormalization correctly accounts for this effect. It is

precisely separating the two stacks in spacetime that is described by the supersymmetric

background solution we studied for general m and n, and we will see that unlike in the

other cases for m = 3, n = 1 it is a vev instead of a mass deformation. Implementing

holographic renormalization properly we also calculate the two-point function in this case,

yielding a different answer from the one originally advertised in [12].

6.2 Counterterms and one-point function

The interesting change in roles between source and vev can already be observed from the

form of the asymptotic solution which in this case reads

Φ = r(ψ̃(0) + ψ(0) log(r) + . . .) (6.1)

for which the first term is normalizable and will set the vev, while the second term is non-

normalizable and will correspond to a source in the dual theory. On our supersymmetric

background solution the source term is zero; we will calculate the vev momentarily. For

m = 3, n = 1 the counterterms become

L1 = −1

2

√
γ (6.2)

L2 =
1

4
log ε

√
γRγ (6.3)

L4 =
1

2

√
γΦ2(x, ε)

(

1 +
1

log ε

)

(6.4)

No finite counterterms can arise and it is again easy to verify that the on-shell action for

our supersymmetric background vanishes with these counterterms already.

In this case, the vev is the ε → 0 limit of

〈O〉 =
log(ε)

ε

1√
γ

δSsub

δΦ(ε)
. (6.5)

Using the counterterms it is again straightforward to obtain

〈O〉 = ψ̃(0) (6.6)

where we again set to zero the terms involving the curvature on the slice. The vev is thus

indeed determined by the coefficient of the normalizable mode; on our supersymmetric

background we simply have 〈O〉 = c. As expected, the brane separation shows up as a vev

and no longer as a mass term.
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6.3 Two-point functions

We discuss in this section the computation of correlation functions. n-point functions can

be obtained from the exact one-point function by further differentiating (n−1) times w.r.t.

the source. It follows that in order to obtain the two-point function it is sufficient to solve

the linearized equation of motion.

The simplest case to consider is the two-point function for the theory specified by the

embedding Φ = 0. We first discuss the 2-point function of the operator dual to the scalar

field Φ. This can be obtained by linearizing the field equation (3.3) around Φ = 0, and

Fourier transforming in the spatial directions we get

r2Φ′′ − rΦ′ − (k2r2 − 1)Φ = 0 (6.7)

This is equal (as it should be) to the linearization of the field equations of a scalar of mass

M2 = −1. The solution of this equation that is regular in the interior is

Φ(r, k) = rK0(kr). (6.8)

Expanding for small r we get

Φ(r, k) = ψ(0)(k)r

(

log r +
1

2
log

k2

µ2

)

(6.9)

where ψ(0)(k) represents the overall normalization of the solution, and µ2 = 4e−2γ (γ is

the Euler constant). Proper units are restored using the AdS radius. It follows that

ψ̃(0)(k) = ψ(0)(k)
1

2
log

k2

µ2
(6.10)

〈O(k)O(−k)〉 = −δψ̃(0)

δψ(0)
= −1

2
log

k2

µ2
(6.11)

Fourier transforming we get the renormalized version of 1/x2 (see appendix)

〈O(x)O(0)〉 =
1

2π

(

1

x2

)

R

(6.12)

(with m = 1), as is appropriate for the two-point function for a scalar operator of dimension

one.

We now discuss the computation of 2-point function which are dual to fields parametriz-

ing the flunctuations of AdS3 in AdS5. The mass of the fluctuations is [12],

m2 = (l − 1)(l − 3) (6.13)

with l a positive integer. One should distiguish between the fluctuations with mass

m2 > −d2

4
+ 1 = 0 ⇒ l > 3 (6.14)

– 16 –



J
H
E
P
0
4
(
2
0
0
6
)
0
1
5

in which case there is a single branch of dual operators with dimension,

∆ = l − 1, l > 3 (6.15)

and fluctuations with mass

−d2

4
= −1 ≤ m2 ≤ −d2

4
+ 1 = 0, ⇒ 1 ≤ l ≤ 3 (6.16)

In this case there are two inequivalent quantizations and we have two branches of operators.

The l = 2 correspond to m2 = −1, so the fluctuations saturate the BF bound. We

discussed the computation of the 2-point functions for this case in the beginning of this

section. The l = 1 and l = 3 cases correspond to massless fluctuations. The l = 1 case

is special: the corresponding boundary operator has dimension zero and thus saturates

the unitarity bound. From the bulk point of view this case utilizes the ∆− branch and

the roles of source and vev are exchanged. The computation of correlation functions for

such cases has been discussed in [25]. When the operators saturate the unitarity bound,

however, the normalization of the (holographically computed) 2-point function turns out

to vanish (set ∆ = d/2 − 1 in (2.19) or (2.21) of [25]) even though the corresponding

QFT 2-point function is generically non-zero indicating subtleties with the normalization

of these operators. Leaving this special case aside we now discuss the computation of

2-point functions for l ≥ 3.

In our analysis so far we have constructed the counterterms required to render the on-

shell action finite and then derived the 1-point function. This can also be done for the case

at hand and this would uniquely fix (up to finite scheme dependent terms) all boundary

terms. We should also note that another (perhaps more fundamental) requirement on the

action is that it is stationary when the field equations hold and appropriate boundary

conditions are imposed. This also fixes all boundary terms to be the ones determined by

finiteness [23].

In this section we are only interested in computing 2-point functions, however, so

instead of first computing the counterterms that would render finite any correlation function

we will follow the simpler route developed in [19]. 2-point functions are determined by

solving the linearized fluctuation equations and to renormalize we need to perform a near-

boundary analysis of the fluctuation equations.

The fluctuation equations can be obtained from (3.16) of [12] 3. In our coordinates

these read

r2w̃′′
l − rw̃′

l − (k2r2 + m2)w̃l = 0 (6.17)

where we Fourier transformed along the boundary directions. In the recent work [24] the

fluctuation equations were analyzed for D3 branes separated by a distance L and shown

to be of the hypergeometric type. One can thus readily derive the 2-point functions in

this more general setting but for simplicity we restrict to the L = 0 case. The fluctuation

equation in (6.17) can also be obtained from (4.10) of [24] in the limit L → 0. The solution

of (6.17) that is regular in the interior is

w̃l(r, k) = rK(l−2)(kr) (6.18)

3We employ the w̃ notation of [12], whereas [24] uses w. The two are related by w = rw̃
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We now discuss how to extract renormalized 2-point functions from the solution of the

fluctuation equation. We will follow the Hamiltonian formalism described in the introduc-

tion. It is useful to introduce a new radial coordinate ρ = − log r. In these coordinates the

AdS3 metric reads

ds2 = dρ2 + e2ρdxidxi (6.19)

and the canonical momenta are given by4

πl = ˙̃wl (6.20)

where overdot denotes differentiation w.r.t. ρ. The fluctuation equation (6.17) becomes

π̇l + 2πl − (ξ + m2)w̃l = 0 (6.21)

where we defined ξ = e−2ρk2, which comes from the Fourier transform of ¤γ at the regu-

lating surface r = const and γij = e2ρδij is the corresponding induced metric.

Since we are interested in 2-point functions, we need to know the radial canonical

momentum as a function of the induced field to linear order. Covariance fixes their relation

to be the form

πl = fl(ξ)w̃l. (6.22)

The regularized 2-point function (with the regulator being a small constant value of the

radial coordinate r = ε) is then given by

〈Ol−1(k)Ol−1(−k)〉ε = − 1

ε2(l−2)
fl(ξ)

= − 1

ε2(l−2)

(

(l − 3) + kε
K(l−3)(kε)

K(l−2)(kε)

)

(6.23)

In the limit ε → 0 these correlators diverge. Our task is to extract correctly the finite part.

As reviewed in section 2, the renormalized 1-point function in the presence of sources is

given by the part of the canonical momentum with dilatation weight equal to the dimension

of the dual operator [18, 19]. To extract this part we need the asymptotic form of fl(ξ).

To this end, we insert (6.22) in (6.21) to obtain

ḟl + f2
l + 2fl − (ξ + m2) = 0 (6.24)

From the general discussion in the introduction we know that the fl(ξ) has an expansion

of the form,

fl(ξ) = fl(0) + fl(2) + · · · + fl(2l−4) + f̃l(2l−4) log r2 + · · · (6.25)

Furthermore, in our case the dilatation operator in (2.14) is just equal to the radial deriva-

tive,

δD = ∂ρ (6.26)

This follows from the fact that the background is AdS3 (insert γij = e2ρδij ,Φ = 0 in (2.14)).

4Strictly speaking, the momenta are densities and one should include a factor of
√

γ as in the formulae

in the introduction. The equations are simpler without these factors, however, so we will work with (6.20).
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Inserting the expansion (6.25) into (6.24) and organizing the terms according to their

dimension one obtains all coefficients except for fl(2l−4) which is left undetermined. Let us

explain this computation. In (6.24) the mass term has dimension 0 and ξ has dimension

2, so fl(0) and fl(2) are different from the remaining fl(2p). We get

l 6= 3 : fl(0) = l − 3, fl(2) =
ξ

2(l − 3)
(6.27)

l = 3 : f3(2) undetermined, f̃3(2) = −ξ

2

For the remaining coefficients one gets a recursive relation,

p 6= l − 2 : fl(2p) =
1

2(p − l + 2)

p−1
∑

n=1

fl(2(p−n))fl(2n) (6.28)

p = l − 2 : fl(2l−4) undetermined, f̃l(2l−4) =
1

2

l−3
∑

n=1

fl(2(l−2−n))fl(2n)

Having determined the asymptotic expansion we now extract the renormalized 2-point

function as

〈Ol−1(k)Ol−1(−k)〉 = − lim
ε→0

1

ε2(l−2)



(l − 3) + kε
K(l−3)(kε)

K(l−2)(kε)
−

l−3
∑

p=0

fl(2p) − f̃l(2l−4) log ε2





(6.29)

Let us work out explicitly the first few cases (µ2 = 4e−2γ as before):

l = 3 : 〈O2(k)O2(−k)〉 =
1

2
k2 log

k2

µ2
(6.30)

l = 4 : 〈O3(k)O3(−k)〉 = −1

8
(k2)2 log

k2

µ2

l = 5 : 〈O4(k)O4(−k)〉 =
1

128
(k2)3

(

log
k2

µ2
− 1

2

)

which is the correct behavior for two-point operator of dimension 2, 3 and 4, respectively.

(The last term in the r.h.s. of the l = 5 case is scheme dependent. It contributes a contact

term in x space). Fourier transforming to x space (using the results of the appendix) we

find

〈O∆(x)O∆(0)〉 =
2νΓ(d

2 + ν)

πd/2Γ(ν)

(

1

x2∆

)

R

(6.31)

where the subscript R indicates that the expression is renormalized and ν = ∆ − d/2.

The normalization of the 2-point functions coincides with the one determined in [26] (as it

should).

By construction, the subtractions in (6.29) can be implemented by means of countert-

erms. The explicit form follows from (2.18) and is given by

Sct =
1

4

∑

l≥3

∫

d2x
√

γw̃l





l−3
∑

p=0

fl(2p) + log ε2f̃l(2l−4)



 w̃∗
l + c.c.
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=
1

4

∑

l≥3

∫

d2x
√

γ

(

(l − 3)w̃lw̃
∗
l −

1

2(l − 3)
w̃l¤γw̃∗

l + · · ·
)

+ c.c. , (6.32)

(when l = 3 there is only the logarithmic counterterm). The renormalized action is given

by the sum of the bulk action and this boundary term. The action derived in [12] should be

viewed as a “bare” action. Adding to it appropriate boundary terms leads to a renormalized

action and the corresponding renormalized correlators exhibit power law behavior.

The fields discussed here are dual to supersymmetric operators that saturate a BPS

bound [12]. A realization of these operators in terms of defect fields has been proposed

in [12] and they contain massless scalar fields. As discussed there this implies that in general

there will be strong infrared effects. The holographic computation discussed here and the

fact that these operators are supersymmetric suggest that appropriate IR renormalization

would lead to 2-point functions exhibiting power law behavior at weak coupling. We leave

the investigation of this issue for future work.

A. Fourier transform

In differential regularization [27], 1/x2 is represented by

(

1

x2

)

R

=
1

8
¤ log2 x2m2 (A.1)

where the subscript R indicates that this is a renormalized expression and m2 is the

renormalization scale. The renormalized expression differs from 1/x2 by the infinite term

δ(x) log x2m2 localized at x = 0.

We now compute the Fourier transform following [28]. Integrating by parts once and

after some manipulations one arrives at

I(k) =

∫

d2xeikx 1

8
¤ log2 x2m2 = −i

kµ

2

∫

d2xeikx xµ

x2
log x2m2

= −π
d

da

((

k2

µ2

)a

F (a)

)

∣

∣

∣

a=0
(A.2)

where µ2 = 4e−2γm2 and

F (a) = −a
22a+1

2π
e−2aγ

∫

rdrdθ
eir cos θ

r2a+2
(A.3)

The integral can be readily computed,

F (a) = e−2γa Γ(1 − a)

Γ(1 + a)
= 1 + O[a]3 (A.4)

It follows

I(k) = −π log
k2

µ2
. (A.5)
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